## SYNTHESIS OF SULTAMS BY CYCLOALKYLATION OF (ALKOXYCARBONYL-METHANE)SULFONANILIDES

## V. A. Rassadin, A. A. Tomashevskii, V. V. Sokolov, and A. A. Potekhin\*

(Methoxycarbonylmethane)sulfonanilides are alkylated by  $\alpha$ ,  $\omega$ -dihaloalkanes in K<sub>2</sub>CO<sub>3</sub>-DMF with the formation of sultams. A high sensitivity has been detected for the reaction rate on the electronic effect of substituents in the aromatic nucleus, although substituents in the ortho position do not obstruct the reaction and in the case of 2,6-disubstituted derivatives the reaction rate and sultam yield were maximal. Tertiary sulfonamides form derivatives of 1-sulfamoylcyclopropanecarboxylic acid under these conditions.

Keywords: (methoxycarbonylmethane)sulfonanilides, sultams, cyclopropanes, heterocyclization.

Many compounds having a sulfonamide group in their composition are used in medicinal practice, for example as antibacterial or hypoglycemic preparations [1, 2]. To this day interest in sulfonamides as potential medicinal preparations is fairly great [3, 4].

Although the generally applied method of obtaining sulfonamides is the interaction of sulfonyl chlorides with amines, the synthesis of cyclic analogues (sultams) is not so simple. One of the possible solutions is the intramolecular alkylation of sulfonamides where means of creating an electrophilic center may be varied. In this connection cycloalkylation with the participation of sulfonamides having an additional C-nucleophilic center with dihalides or their equivalent may possess obvious merit.

From this point of view the sulfonamides 2 obtained from readily available alkoxycarbonylmethanesulfonyl chlorides 1a,b may posses a high potential [5]. Although heterocyclization of these sulfonamides by intramolecular condensation of carbonyl and active methylene groups [6] or transposition of C,N-diallyl derivatives [7] is known, their alkylation by aliphatic dihalides has not been described and attracted our attention.

 $ClO_{2}SCH_{2}CO_{2}Me + R^{1}R^{2}NH \xrightarrow{Py, MeCN} R^{1}R^{2}NSO_{2}CH_{2}CO_{2}Me$ 1a
2 a R<sup>1</sup> = Ph, b R<sup>1</sup> = Ph, c R<sup>1</sup> = 2-MeC\_{6}H\_{4}, d R<sup>1</sup> = 4-MeC\_{6}H\_{4}, e R<sup>1</sup> = 2,6-Me\_{2}C\_{6}H\_{3}, f R<sup>1</sup> = 4-ClC\_{6}H\_{4}, g R<sup>1</sup> = 3,5-Cl\_{2}C\_{6}H\_{3},
h R<sup>1</sup> = 4-MeC\_{6}H\_{4}, i R<sup>1</sup> = 4-EtOCOC\_{6}H\_{4}; a, c-i R<sup>2</sup> = H, b R<sup>2</sup> = Me

\* Deceased.

0009-3122/08/4404-0474©2008 Springer Science+Business Media, Inc.

Saint Petersburg University, Saint Petersburg 198504, Russia; e-mail: vsokolo@mail.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 605-617, April. 2008. Original article submitted October 8, 2007.

Sulfonamides 2a-i were obtained as starting materials (Tables 1, 2).

The interaction of sulfonyl chloride **1a** with anilines took place without complications from the ester group and led to sulfonamides **2a-i** in high yield. However in the aliphatic series even the not very nucleophilic benzylamine begins to react competitively with the ester. In order to avoid this complication in obtaining N-benzylamide **2j** it was necessary to use ethyl ester **1b** and carry out the reaction at reduced temperature.

$$CIO_2SCH_2CO_2Et + BnNH_2 \xrightarrow{NMM, Et_2O} BnNHSO_2CH_2CO_2Et$$

$$1b \qquad 2j$$

$$NMM - N-methylmorpholine$$

Two nucleophilic centers exist in sulfonamides 2a,c-j with no clear previous relative reactivity. In reality on interacting sulfonamide 2a with an equivalent amount of benzyl chloride in the system K<sub>2</sub>CO<sub>3</sub>–DMF a mixture is formed of the products of N- and C,N-alkylation (2k and 3a respectively) in a 4:3 ratio.



However on using a dilute solution of allyl bromide the reaction was carried out successfully and the sole product was that of N-alkylation **2**I.



Alkylation of sulfonamides **2a,c-j** with 1,2-dibromoethane in the same system led to the desired sultams **4** (Tables 3, 4). With a high degree of conversion of sulfonamide **2a** the formation was observed of a product of further alkylation of unestablished structure. A change to the less polar acetonitrile or a protic solvent, and also replacement of potassium carbonate by a weaker base might increase the yield of sultam **4a**. However the reaction did not proceed in methanol, and on using acetonitrile in combination with various bases (calcium carbonate, triethylamine, N,N-dimethylaniline) its rate was heavily reduced.

| Com-  | Empirical                                                       | -                     | Found, %<br>Calculated, % | -                   | mp, °C    | Yield, |
|-------|-----------------------------------------------------------------|-----------------------|---------------------------|---------------------|-----------|--------|
| pound | Tormula                                                         | С                     | Н                         | Ν                   |           | %0     |
| 2a    | C <sub>9</sub> H <sub>11</sub> NO <sub>4</sub> S                |                       |                           |                     | 79-80 [7] | 74     |
| 2b    | $C_{10}H_{13}NO_4S$                                             | <u>49.36</u><br>49.37 | <u>5.38</u><br>5.39       | <u>5.93</u><br>5.76 | 63-64     | 79     |
| 2c    | $C_{10}H_{13}NO_4S$                                             | <u>49.20</u><br>49.37 | <u>5.50</u><br>5.39       | <u>6.05</u><br>5.76 | 55-56     | 72     |
| 2d    | $C_{10}H_{13}NO_4S$                                             | <u>49.36</u><br>49.37 | <u>5.60</u><br>5.39       | <u>6.02</u><br>5.76 | 77-79     | 85     |
| 2e    | $C_{11}H_{15}NO_4S$                                             | <u>51.42</u><br>51.35 | <u>5.74</u><br>5.88       | <u>5.57</u><br>5.44 | 105-106   | 82     |
| 2f    | C <sub>9</sub> H <sub>10</sub> ClNO <sub>4</sub> S              | $\frac{41.12}{40.99}$ | $\frac{4.09}{3.82}$       | <u>5.33</u><br>5.31 | 99-100    | 72     |
| 2g    | C <sub>9</sub> H <sub>9</sub> Cl <sub>2</sub> NO <sub>4</sub> S | $\frac{36.03}{36.26}$ | $\frac{3.18}{3.04}$       | $\frac{4.73}{4.70}$ | 132-133   | 78     |
| 2h    | $C_{10}H_{13}NO_5S$                                             | $\frac{46.23}{46.32}$ | $\frac{5.05}{5.05}$       | $\frac{5.54}{5.40}$ | 85-86     | 71     |
| 2i    | $C_{12}H_{15}NO_6S$                                             | $\frac{47.63}{47.83}$ | $\frac{4.98}{5.02}$       | $\frac{4.62}{4.65}$ | 98-99     | 83     |
| 2ј    | $C_{11}H_{15}NO_4S$                                             | <u>51.42</u><br>51.35 | <u>5.67</u><br>5.88       | <u>5.30</u><br>5.44 | 56-57     | 60     |

TABLE 1. Alkoxycarbonylmethanesulfonamides 2a-j

The  $K_2CO_3$ -DMF system therefore proved to be the most suitable for obtaining sultam 4a in dilute solution.

To clarify the limits of applicability of the reaction, the set of sulfonamides 2a,c-i and several  $\alpha,\omega$ -dihaloalkanes were studied. As a result it became clear that in the case of sulfonanilides the given reaction is extremely sensitive to the electronic effect of substituents. Electron-withdrawing groups strongly slowed the process, and for its completion extended stirring at a higher temperature is necessary than in the case of sulfonamide 2a. It is evident that this is linked with the reduced nucleophilicity of the resulting anion. Donor substituents in the benzene ring, on the other hand, aid the passage of the reaction. Sulfonanilides 2d,h reacted more rapidly than sulfonanilide 2a.

In addition it was discovered that substituents in the *ortho* position do not prevent this reaction, and in the case of sulfonamide **2e** the reaction proceeds most rapidly and with maximal yield. A possible explanation is that in the present case, due to the loss of a portion of the degree of freedom, the loss in entropy of the system as a result of the reaction is less than in the case of other sulfonamides, which is analogous to the well known *gem*-dialkyl effect in cyclization reactions [9]. The high steric strain of the products of cycloalkylation of sulfonamide **2e** with all three  $\alpha, \omega$ -dihaloalkanes is confirmed, judging by the diastereotopicity of the C-methyl groups according to NMR spectra.

On reacting N-benzylsulfonamide 2j with dibromoethane a multicomponent mixture is formed, the resolution of which made it possible to obtain ethyl 2-benzyl-1,2-thiazolidine-5-carboxylate 1,1-dioxide (4j) in extremely small yield. Such a result is probably linked with the low acidity of sulfonamide 2j, consequently the use of a stronger base might have aided the reaction process. However in the system NaH–THF (benzylaminosulfonyl)acetic acid (9j) was obtained in quantitative yield. In passing, this reaction goes through the intermediate formation of a  $\beta$ -lactam.



476

| Com-<br>pound | <sup>1</sup> H NMR spectrum (CDCl <sub>3</sub> ), \delta, ppm (J, Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>13</sup> C NMR spectrum (CDCl <sub>3</sub> ), δ, ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mass-spectrum, $m/z$ ( $I_{\rm rel}$ , %)                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 2b            | 3.43 (3H, s, NCH3); 3.82 (3H, s, OCH3);<br>3.98 (2H, s, SO <sub>2</sub> CH <sub>3</sub> ); 7.32-7.51 (5H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.9 (NCH <sub>3</sub> ), 53.3 (OCH <sub>3</sub> ), 53.9 (SO <sub>2</sub> CH <sub>2</sub> ), 127.2 ( <i>o</i> / <i>m</i> -C <sub>A</sub> ),<br>128 1 ( <i>p</i> -C,.), 129 6 ( <i>m</i> / <i>o</i> -C,.), 140 7 ( <i>inso</i> -C,.), 164 0 (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 243 [M] <sup>+</sup> (71), 106 (100), 104 (15), 79 (21),<br>77 (38) 42 (15)                                             |
| 2c            | 2.13 (4.13); 5.22,22); 5.23 (3.15, 5.24); 5.24 (13); 5.25 (3.15, 5.26); 5.25 (3.15, 5.26); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24); 5.24 (3.15, 5.24) | 126.7 ( $C_{Ar}$ ), 52.3 ( $C_{CH}$ ), 54.1 ( $SO_{2}$ CH <sub>2</sub> ), 123.0 ( $C_{Ar}$ H), 126.7 ( $C_{Ar}$ H), 131.5 ( $C_{Ar}$ H), 132.2 ( $C_{Ar}$ H), 132.2 ( $C_{Ar}$ H), 132.4 ( $C_{Ar}$ H), 132.5 ( $C_{Ar}$ H), 132.5 ( $C_{Ar}$ H), 132.6 ( $C_{Ar}$ H), 132.7 ( $C_{Ar}$ H), 132.7 ( $C_{Ar}$ H), 132.7 ( $C_{Ar}$ H), 132.8 ( $C_{A$ | 243 [M] <sup>+</sup> (12), 106 (100), 79 (10), 77 (19)                                                                  |
| 2d            | 2.35 (3H, s, CCH <sub>3</sub> ), 3.84 (3H, s, OCH <sub>3</sub> );<br>2.35 (2H, s, SO <sub>2</sub> CH <sub>2</sub> ); 3.84 (3H, s, OCH <sub>3</sub> );<br>3.95 (2H, s, SO <sub>2</sub> CH <sub>2</sub> ); 6.91 (1H, s, NH);<br>7.17-7.25 (4H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130.3 (3,5-С <sub>м</sub> ), 133.4 (1/4-С <sub>м</sub> ), 133.4 (26-С <sub>м</sub> ), 130.3 (3,5-С <sub>м</sub> ), 133.4 (1/4-С <sub>м</sub> ), 136.6 (4/1-С <sub>м</sub> ), 164.6 (СО)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 243 [M] <sup>+</sup> (27), 211 (12), 106 (100), 79 (28),<br>77 (32)                                                     |
| 2e            | 2.42 (6H, s, 2CH <sub>3</sub> ); 3.85 (3H, s, OCH <sub>3</sub> );<br>4.20 (2H, s, SO <sub>2</sub> CH <sub>2</sub> ); 6.68 (1H, s, NH);<br>7.08-7.17 (3H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.2 (CCH <sub>3</sub> ), 53.3 (OCH <sub>3</sub> ), 57.7 (SO <sub>2</sub> CH <sub>2</sub> ), 128.2 (4-C <sub>A</sub> ),<br>128.9 (3,5-C <sub>A</sub> ), 132.5 (1-C <sub>A</sub> ), 137.7 (2,6-C <sub>A</sub> ), 164.8 (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 257 [M] <sup>+</sup> (8), 120 (100), 91 (12)                                                                            |
| 2f            | 3.82 (3H, s, OCH.); 3.98 (2H, s, SO <sub>2</sub> CH <sub>2</sub> );<br>7.26 (1H, s, NH); 7.27-7.36 (4H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.0 (SO <sub>2</sub> CH <sub>3</sub> ), 53.5 (OCH <sub>3</sub> ), 124.0 (2,6-C <sub>A</sub> ), 129.9 (3,5-C <sub>A</sub> ),<br>132.2 (1/4-C <sub>A</sub> ), 134.7 (4/1-C <sub>A</sub> ), 164.4 (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 263 [M] <sup>+</sup> (21), 231 (28), 126 (100), 99 (50)                                                                 |
| 2g            | 3.85 (3H, s, OCH <sub>3</sub> ); 4.03 (2H, s, SO <sub>2</sub> CH <sub>2</sub> );<br>7.24-7.27 (4H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.6 (SO <sub>2</sub> CH <sub>3</sub> ), 53.7 (OCH <sub>3</sub> ), 120.2 (2,6-C <sub>A</sub> ), 126.4 (4-C <sub>A</sub> ),<br>136.1 (3,5-C <sub>A</sub> ), 138.2 (1-C <sub>A</sub> ), 164.3 (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 297 [M] <sup>+</sup> (100), 265 (92), 223 (22), 187 (58),<br>160 (50), 133 (78), 104 (32), 90 (20), 63 (36),<br>45 (23) |
| 2h            | 3.82 (3H, s, OCH <sub>3</sub> ); 3.85 (3H, s, OCH <sub>3</sub> );<br>3.93 (2H, s, SO <sub>2</sub> CH <sub>2</sub> ); 6.87 (1H, s, NH);<br>6.91 (2H, d, <i>J</i> = 8.7, 3.5-ArH);<br>7.30 (2H, d, <i>J</i> = 8.7, 2.6-ArH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52.6 (SO <sub>2</sub> CH <sub>3</sub> ), 53.4 (OCH <sub>3</sub> ), 55.6 (OCH <sub>3</sub> ), 114.9 (3,5-C <sub>M</sub> ),<br>125.6 (2,6-C <sub>M</sub> ), 128.6 (1-C <sub>M</sub> ), 158.6 (4-C <sub>M</sub> ), 164.6 (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 259 [M] <sup>+</sup> (10), 122 (100), 95 (16)                                                                           |
| 2i            | 1.40 (3H, t, <i>J</i> = 7.0, CH <sub>3</sub> C <u>H<sub>3</sub></u> ); 3.81 (3H, s, OCH <sub>3</sub> );<br>4.0 (2H, s, SO <sub>2</sub> CH <sub>2</sub> ); 4.38 (2H, q, <i>J</i> = 7, C <u>H<sub>3</sub></u> CH <sub>3</sub> );<br>7.37 (2H, d, <i>J</i> = 8.7, 2,6-ArH); 7.47 (1H, s, NH);<br>8.06 (2H, d, <i>J</i> = 8.7, 3,5-ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.4 (CH <sub>2</sub> CH <sub>3</sub> ), 53.5 (OCH <sub>3</sub> ), 53.62 (SO <sub>2</sub> CH <sub>2</sub> ), 61.3 (OCH <sub>2</sub> ),<br>120.5 (2,6-C <sub>M</sub> ), 127.9 (4-C <sub>M</sub> ), 131.4 (3,5-C <sub>M</sub> ), 140.5 (1-C <sub>M</sub> ),<br>164.1 (CO), 165.9 (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 301 [M] <sup>+</sup> (100), 256 (48), 241 (48), 182 (57),<br>163 (90), 119 (38), 108 (95), 91 (50), 64 (33),<br>42 (17) |
| 2j            | 1.30 (3H, t, $J = 7.3$ , CH <sub>2</sub> CH <sub>3</sub> ); 3.89 (2H, s, SO <sub>2</sub> CH <sub>2</sub> );<br>4.23 (2H, q, $J = 7.3$ , CH <sub>2</sub> CH <sub>3</sub> );<br>4.36 (2H, d, $J = 6.5$ , NCH <sub>2</sub> ); 5.30 (1H, t, $J = 6.5$ , NH);<br>7.30-7.41 (5H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.1 (CH <sub>2</sub> CH <sub>3</sub> ), 47.9 (NCH <sub>2</sub> ), 55.7 (SO <sub>2</sub> CH <sub>2</sub> ), 62.6 (OCH <sub>2</sub> ),<br>128.3 ( <i>o/m</i> -C <sub>AI</sub> ), 128.3 ( <i>p</i> -C <sub>AI</sub> ), 129.0 ( <i>m/o</i> -C <sub>AI</sub> ),<br>136.2 ( <i>ipso</i> -C <sub>AI</sub> ), 164.2 (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106 (100), 91 (40), 88 (10), 77 (22), 60 (16),<br>51 (15), 42 (17)                                                      |

TABLE 2. Spectral Characteristics of Sulfonamides 2b-j

TABLE 3. Sultams

|       |                       |                       | Found %             |                     |         |         |
|-------|-----------------------|-----------------------|---------------------|---------------------|---------|---------|
| Com-  | Empirical             | -                     | Calculated %        | -                   | mn.⁰C   | Yield % |
| pound | formula               | С                     | H                   | N                   | mp, e   |         |
|       |                       |                       |                     |                     |         |         |
| 4a    | $C_{11}H_{13}NO_4S$   | <u>51.69</u><br>51.75 | $\frac{5.15}{5.13}$ | <u>5.56</u><br>5.56 | 96-97   | 70      |
| 4c    | $C_{12}H_{15}NO_4S$   | $\frac{53.40}{53.52}$ | $\frac{5.62}{5.61}$ | $\frac{5.07}{5.20}$ | 69-70   | 68      |
| 4d    | $C_{12}H_{15}NO_4S$   | $\frac{53.43}{53.52}$ | <u>5.54</u><br>5.61 | $\frac{5.18}{5.20}$ | 99-100  | 76      |
| 4e    | $C_{13}H_{17}NO_4S$   | <u>55.19</u><br>55.12 | $\frac{6.11}{6.05}$ | $\frac{4.89}{4.94}$ | 107-108 | 86      |
| 4f    | $C_{11}H_{12}CINO_4S$ | $\frac{45.48}{45.60}$ | $\frac{4.12}{4.17}$ | $\frac{4.89}{4.83}$ | 121-122 | 56      |
| 4h    | $C_{12}H_{15}NO_5S$   | <u>50.58</u><br>50.53 | <u>5.26</u><br>5.26 | $\frac{4.93}{4.91}$ | 125-126 | 74      |
| 4i    | $C_{14}H_{17}NO_6S$   | <u>51.48</u><br>51.37 | $\frac{5.31}{5.23}$ | $\frac{4.12}{4.28}$ | 143-144 | 18      |
| 4j    | $C_{13}H_{17}NO_4S$   |                       |                     |                     | —       | 1.5     |
| 6a    | $C_{12}H_{15}NO_4S$   | $\frac{53.40}{53.52}$ | <u>5.60</u><br>5.61 | $\frac{5.20}{5.20}$ | 59-60   | 73      |
| 6e    | $C_{14}H_{19}NO_4S$   | <u>56.46</u><br>56.55 | $\frac{6.44}{6.44}$ | $\frac{4.72}{4.71}$ | 172-174 | 84      |
| 7e    | $C_{15}H_{21}NO_4S$   | <u>57.86</u><br>57.86 | $\frac{6.91}{6.80}$ | $\frac{4.45}{4.50}$ | 127-128 | 27      |
| 10a   | $C_{17}H_{17}NO_4S$   | $\frac{61.48}{61.61}$ | $\frac{5.31}{5.17}$ | $\frac{4.27}{4.23}$ | 137-138 | 53      |

To clarify the possibility of obtaining six- and seven-membered derivatives the alkylation of sulfonamides **2a,e** with 1-bromo-3-chloropropane and 1,4-dibromobutane was investigated.



1-Bromo-3-chloropropane reacts somewhat more slowly than dibromoethane. In the present case slower addition of alkylating agent is required otherwise several products are formed. As expected, sulfonamide 2e, which was the most reactive in the reaction with dibromoethane, reacted far more rapidly in the present case than the unsubstituted analog 2a.

More vigorous and extended heating was required to carry out the reaction with 1,4-dibromobutane. In the case of sulfonamide 2e we successfully isolated methyl 2-(2,6-dimethylphenyl)-1,2-thiazepane-7-carboxylate 1,1-dioxide (7e) in 27% yield, but in the case of amide 2a a multicomponent mixture was formed, resolution of which was unsuccessful. This result is fairly logical since the rate of formation of seven-

membered rings is far lower than that of five- and six-membered. However on using a sterically more rigid alkylating agent the probability of intramolecular reaction grows. Thus on alkylating sulfonamide 2a with 1,2-bis(bromomethyl)benzene 4-methoxycarbonyl-2-phenyl-1,2,4,5-tetrahydro[d][1,2]thiazepine 3,3-dioxide (10a) was successfully isolated in 53% yield.



In the <sup>1</sup>H NMR (but not the <sup>13</sup>C) spectrum of this compound a strong broadening was observed of the proton signals of the seven-membered ring, which indicates the presence of a conformational coalescence transition close to room temperature.

All the obtained sultams 4-7 contain an ester grouping which may be hydrolyzed under mild conditions with the formation of the corresponding acids 5a, 8a without decarboxylation, which opens the possibility of further functionalization at the carboxyl group.

For the tertiary sulfonamide **2b** it was shown possible to obtain the cyclopropane derivative **11b** in high yield.



The obtained ester **11b** was readily hydrolyzed to the corresponding acid **12b**, and on boiling the latter for 15 h in N,N-dimethylacetamide no decarboxylation occurred.

## **EXPERIMENTAL**

The <sup>1</sup>H and <sup>13</sup>C NMR spectra were taken on a Bruker DPX 300 instrument (300 and 75 MHz respectively) in CDCl<sub>3</sub>. Chemical shifts were determined relative to the solvent signal in <sup>1</sup>H NMR spectra: 7.26 (for CHCl<sub>3</sub>) and 2.49 ppm (for DMSO-d<sub>5</sub>); in <sup>13</sup>C NMR spectra: 77.1 (for CDCl<sub>3</sub>), 39.5 (for DMSO-d<sub>6</sub>) and 204.1 ppm (acetone-d<sub>6</sub>). Coupling constants in proton spectra were measured to a first order approximation. The standard impulse sequence DEPT-135 was used to determine the multiplicity of signals in the <sup>13</sup>C NMR spectra. Mass spectra were obtained on a Finnigan MAT Incos 50 instrument, ionization by electron impact (EI) with energy of ionizing electrons 70 eV. Elemental analyses were carried out on a Hewlett Packard HP-185B automatic CHN analyzer. The degree of progress of a reaction, the *R*<sub>f</sub> values, and purity of products was checked by TLC on ALUGRAM<sup>®</sup> SIL G/UV<sub>254</sub>, eluent ethyl acetate–hexane, 1:2, if not shown otherwise.

| Com-<br>pound | <sup>1</sup> H NMR spectrum (CDCl <sub>3</sub> ), $\delta$ , ppm ( <i>J</i> , Hz)                                                                                          | <sup>13</sup> C NMR spectrum (CDCl <sub>3</sub> ), δ, ppm                                                                                                                                           | Mass spectrum, $m/z$ ( $I_{rel}$ , %)                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1             | 2                                                                                                                                                                          | 3                                                                                                                                                                                                   | 4                                                                                      |
| 4a            | 2.67 (1H, m, H-4); 2.90 (1H, m, H-4');<br>3.76 (1H, dt 7 = 6.9 and 7 = 8.7 H-33; 3.01 (3H s. OCH.3);                                                                       | 22.1 (C-4), 45.4 (C-3), 53.8 (OCH <sub>3</sub> ), 62.0 (C-5),<br>121.7 (o-f <sup>-1</sup> ), 175.7 (o-f <sup>-1</sup> ), 179.5 (orf <sup>-1</sup> ),                                                | 255 [M] <sup>+</sup> (38), 160 (12), 132 (100),<br>104 (83) 77 (81) 51 (20) 39 (18)    |
|               | 3.93 (1H, m, H-3); $4.30$ (1H, dd, $J = 6.9$ and $J = 8.7$ , H-5); $7.20-7.42$ (5H, m, ArH)                                                                                | 137.2 (ipso-Car), 155.0 (CO)                                                                                                                                                                        |                                                                                        |
| 4c            | 2.39 (3H, s, CCH <sub>3</sub> ); 2.68 (1H, m, H-4); 2.89 (1H, m, H-4); 3.65 (1H, dt, $J = 5.5$ and $J = 8.7$ , H-3);                                                       | 18.0 (CCH <sub>3</sub> ), 22.6 (C-4), 47.6 (C-3), 53.7 (OCH <sub>3</sub> ),<br>60.8 (C-5), 127.2 (C <sub>A</sub> ,H), 128.7 (C <sub>A</sub> ,H), 129.0 (C <sub>A</sub> ,H).                         | 269 [M] <sup>+</sup> (12), 146 (51), 118 (100),<br>91 (35), 65 (22), 55 (18), 39 (17)  |
|               | 3.79 (1H, dt, $J = 5.8$ and $J = 8.7$ , H-31); 3.91 (3H, s, OCH <sub>3</sub> );<br>4.26 (1H, dd, $J = 5.5$ and $J = 8.4$ , H-5); 7.24-7.43 (4H, m, ArH)                    | 131.5 (C <sub>A</sub> ,H), 134.7 (C <sub>A</sub> ), 139.1 (C <sub>A</sub> ), 165.8 (CO)                                                                                                             |                                                                                        |
| 4d            | 2.35 (3H, s, CCH <sub>3</sub> ); 2.64 (1H, m, H-4); 2.88 (1H, m, H-4');<br>3.73 (1H, dt. <i>J</i> = 6.9 and <i>J</i> = 8.7 H-3); 3.86 (1H, m, H-3');                       | 21.0 (CCH <sub>3</sub> ), 22.2 (C-4), 45.8 (C-3), 53.8 (OCH <sub>3</sub> ),<br>61.8 (C-5), 172 3 (C,-2 6), 130.2 (C,-3 5)                                                                           | 269 [M] <sup>+</sup> (32), 146 (60), 130 (10),<br>119 (100) 91 (82) 77 (12) 65 (40)    |
|               | 3.96 (3H) s, OCH3); 4.26 (1H, dd, $J = 5.5$ and 8.4, H-5);<br>7.17-7.23 (4H, m, ArH)                                                                                       | $134.4(C_{Ar}-1/4), 136.1(C_{Ar}-4/1), 165.2(CO)$                                                                                                                                                   | 55 (32), 39 (29)                                                                       |
| 4e            | 2.38 (3H, s, CCH <sub>3</sub> ); 2.41 (3H, s, CCH <sub>3</sub> ); 2.73 (1H, m, H-4); 2.03 (1H, m, H-4); $3.03$ (1H, m, H-4), $3.60$ (1H, 4t, $I = 5.8$ and $I = 8.7$ H-3). | 18.4 (CCH <sub>3</sub> ), 18.6 (C <u>C</u> H <sub>3</sub> ), 22.5 (C-4), 45.3 (C-3),<br>53.5 (OCH <sub>3</sub> ), 60.6 (C <sub>5</sub> ), 120.1 (C <sub>2</sub> , 23.5), 120.2 (C <sub>2</sub> , A) | 283 [M] <sup>+</sup> (12), 204 (22), 160 (31),<br>132 (100) 117 (30) 105 (20) 01 (12)  |
|               | 2.50 (111, 111, 117, 117, 117, 117, 117, 117                                                                                                                               | 132.3 (Correl), 00.0 (Correl), 122.1 (Correl), 122.2 (Correl), 132.3 (Correl), 139.8 (Correl), 140.6 (Correl), 165.3 (CO)                                                                           | 77 (21), 55 (22), 39 (18).                                                             |
| 4f            | 2.67 (1H, m, H-4); 2.82 (1H, m, H-4); 3.72 (1H, m, H-3);<br>3.91 (3H, s, OCH <sub>3</sub> ); 3.82 (1H, m, H-3');                                                           | 22.1 (C-4), 45.5 (C-3), 53.9 (OCH <sub>3</sub> ), 61.9 (C-5),<br>122.7 (C <sub>Ar</sub> -2,6), 129.7 (C <sub>Ar</sub> -3,5), 131.4 (C <sub>Ar</sub> -1/4),                                          | 289 [M] <sup>+</sup> (15), 166 (62), 139 (100),<br>111 (62), 75 (40), 55 (40), 39 (20) |
|               | 4.29 (1H, t, <i>J</i> = 7.3, H-5); 7.23-7.37 (4H, m, ArH)                                                                                                                  | 135.8 (C <sub>Ar</sub> -4/1), 164.9 (CO)                                                                                                                                                            |                                                                                        |
| 4h            | 2.63 (1H, m, H-4); 2.73 (1H, m, H-4); 3.69 (1H, m, H-3);<br>3.81 (3H & OCH3): 3.87 (1H m, H-3); 3.90 (3H & OCH3)                                                           | 22.3 (C-4), 46.6 (C-3), 53.7 (OCH <sub>3</sub> ), 55.6 (OCH <sub>3</sub> ),<br>61 4 (C-5) 114 9 (C3 5) 125 8 (C2 6)                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   |
|               | 6.25.7 (1H, dd, J = 6.5 and J = 8.7, H-5);<br>6.89-6 95 (2H, m. 3, 5-Arth): 7.25-7.30 (2H, m. 2, 6-Arth)                                                                   | 129.4 (CAr-1), 158.6 (CAr-4), 165.4 (CO)                                                                                                                                                            | 39 (28)                                                                                |
|               |                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                        |

TABLE 4.  $^1\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR Spectra and Mass Spectra of Sultams

| ABLE 4. (continu | ed)       |
|------------------|-----------|
| ABLE 4. (con     | tinu      |
| ABLE 4. (        | con       |
| ABLE 4.          |           |
| ABLE             | $\sim$    |
| ABL              | 4.        |
| AB               | ,Е4. (    |
| 4                | LE 4. (   |
| r 7              | BLE 4. (  |
|                  | ABLE 4. ( |

| -   | ,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                       |                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| -   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                       | -                                                   |
| 4i  | 1.39 (3H, $t J = 6.9$ , OCH <sub>3</sub> CH <sub>3</sub> ); 2.70 (1H, m, H-4);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.5 (CH <sub>2</sub> CH <sub>3</sub> ), 22.0 (C-4), 44.9 (C-3), 53.9 (OCH <sub>3</sub> ),                                                                                              | 327 [M] <sup>+</sup> (18), 218 (14), 204 (54),      |
|     | 2.80 (1H, H, J = 0.5 and J = 7.5, H = 4); $5.16 (1H, H, H = 7)$ ;<br>3.89 (3H, s, OCL); $3.90 (1H, H = 3)$ ; $4.284 + 39 (3H, H)$ ;<br>7.77 (1H = 1 = 8.0.56 A; H); s 0.01 (1H = 1 = 8.0.25 A; H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01.1 (OCD3), 02.4 (U-3), 110.1 (UAr-2,0), 120.4 (UAr-4), 131.1 (CAr-3,5), 141.6 (CAr-1), 164.6 (CO), 166.1 (CO)                                                                         | 77 (52), 64 (20), 55 (32)                           |
| 4j  | $7.27$ (111, u, $2 - 8.05$ , $20^{-5}$ MIL, $6.04$ (111, $0, 7 - 8.05$ , $5.5^{-7}$ MIL)<br>1.36 (3H, $t, J = 6.95$ , OCH <sub>5</sub> CH <sub>3</sub> ); 2.43 (1H, $M, H-4$ );<br>1.47 (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (200); $1.42$ (20 | 14.0 (CH <sub>2</sub> CH <sub>3</sub> ), 22.2 (C-4), 44.2 (CH <sub>2</sub> ), 49.1 (CH <sub>2</sub> ),                                                                                  | 262 [M-1] <sup>+</sup> (11), 206 (24), 146 (15),    |
|     | 2.67 (1H, m, H-44); 5.10 (1H, ddd, $J = 5.8$ , $J = 8.0and J = 9.5, H-3); 3.23 (1H, ddd, J = 5.8, J = 8.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00.9 (L-2), 02.6 (OCH2), 128.0 (P-C <sub>AT</sub> ), 128.4 ( <i>orm-C</i> <sub>AT</sub> ),<br>128.7 ( <i>m</i> /o-C <sub>AT</sub> ), 135.3 ( <i>ipso-</i> C <sub>AT</sub> ), 165.0 (CO) | 119 (12), 91 (100)                                  |
|     | and $J = Y_{23}$ , $T = 2$ , $f_{4.11}$ (117, $du, J = 3.6$ and $J = 6.7$ , $T = 3$ ),<br>4.18 (114, d, $J = 14.5$ , $C_{M}CHH$ ); 4.26 (114, d, $J = 14.5$ , $C_{M}CHH$ );<br>4.274.42 (214, m); 7.30-7.33 (514, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                     |
| 6a  | 1.95 (1H, m); 2.10 (1H, m); 2.59 (2H, m); 3.74 (1H, dt, <i>J</i> = 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.0 (CH <sub>2</sub> ), 28.0 (CH <sub>2</sub> ), 53.3 (C-3), 53.3 (OCH <sub>3</sub> ),                                                                                                 | 269 [M] <sup>+</sup> (50), 146 (52), 119 (100),     |
|     | and J = 13.8, H-3); 3.82 (3H, s, OCH <sub>3</sub> ); 3.95-4.01 (1H, m);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.7 (C-6), 126.8 (o/m-C <sub>Ar</sub> ), 127.4 (p-C <sub>Ar</sub> ),                                                                                                                   | 105 (90), 91 (30), 77 (86), 64 (18),                |
|     | 4.08 (1H, dd, $J = 4.4$ and $J = 9.6$ , H-6); /.2/-/.40 (5H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129.2 (m/o-Car), 140.7 (tpso-Car), 165.7 (CU)                                                                                                                                           | 55 (28), 51 (49), 39 (42)                           |
| 6e  | 1.96-2.03 (2H, m); 2.41 (3H, s, CCH <sub>3</sub> ); 2.42 (3H, s, CCH <sub>3</sub> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.4 (CCH <sub>3</sub> ), 20.1 (CCH <sub>3</sub> ), 24.7 (CH <sub>2</sub> ), 28.3 (CH <sub>2</sub> ),                                                                                   | 297 [M] <sup>+</sup> (7), 218 (25), 174 (100),      |
|     | 2.50-2.72 (2H, m); $3.33$ (1H, d, $J = 13.1$ , H-3);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.2 (C-3), 53.3 (OCH <sub>3</sub> ) 65.0 (C-6), 128.4 (C <sub>Ar</sub> -3/4/5),                                                                                                        | 132 (65), 117 (19), 105 (21), 91 (11),              |
|     | $3.85 (3H, s, OCH_3); 4.04 (1H, m, H-3); 4.16 (1H, dd, J = 4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $128.7$ (Car-4/5/3), 129.3 (Car-5/3/4), 138.0 (Car-1/2/6), 138.8 f C $_{24}$                                                                                                            | 77 (22), 55 (16), 39 (22)                           |
| 76  | anu 2 - 114, 11-0), 7.00-7.14 (211, 11, 7111)<br>1 73-1 83 (1H m): 2 06-2 37 (5H m): 2 41 (3H s (CCH <sub>3</sub> ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190.0 (Carziori), 190.9 (Caroli 1/2), 190.0 (CO)<br>19.2 (CCH.) 19.8 (CCH.) 25.3 (CH.) 27.7 (CH.)                                                                                       | 311 [M1 <sup>+</sup> (6) 280 (11) 247 (14) 188 (39) |
| 2   | 2.47 (3H, s, CCH <sub>3</sub> ); 2.98 (1H, dt, $J = 5.8$ and $J = 12.1$ );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.8 (CH <sub>2</sub> ), 50.6 (C-3), 53.2 (OCH <sub>3</sub> ), 71.7 (C-7),                                                                                                              | 177 (16), 132 (100), 105 (16), 77 (16),             |
|     | 3.64 (1H, ddd, $J = 2.8$ , $J = 5.3$ and $J = 12.1$ ); 3.80 (3H, s, OCH <sub>3</sub> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128.5 (3/4/5-C <sub>Ar</sub> ), 129.2 (4/5/3-C <sub>Ar</sub> ), 129.5 (5/3/4-C <sub>Ar</sub> ),                                                                                         | 39 (16)                                             |
|     | 4.15 (1H, dd, <i>J</i> = 4.6 and <i>J</i> = 11.1, H-7); 7.07-7.15 (3H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 136.4 (1-C <sub>Ar</sub> ), 139.6 (C <sub>Ar</sub> -2,6), 166.8 (CO)                                                                                                                    |                                                     |
| 10a | 3.47 (1H, d, <i>J</i> = 15.3, H-5); 3.78 (4H, m);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.6 (C-5), 53.4 (OCH <sub>3</sub> ), 55.9 (C-1), 67.0 (C-4),                                                                                                                           | 331 [M] <sup>+</sup> (10), 206 (27), 116 (100),     |
|     | 4.08 (1H, d, <i>J</i> = 10.9, H-4); 4.38 (1H, br. s, H-1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.2 (C <sub>Ar</sub> H), 128.5 (C <sub>Ar</sub> H), 129.0 (2C <sub>Ar</sub> H),                                                                                                       | 104 (24), 93 (59), 77 (79), 64 (23),                |
|     | 5.18 (1H, br. s, H-1'); $6.80$ (2H, d, $J = 10.9$ , ArH);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 129.3 (3C <sub>Ar</sub> H), 130.2 (C <sub>Ar</sub> H), 131.4 (C <sub>Ar</sub> H), 136.7 (C <sub>Ar</sub> ),                                                                             | 59 (26), 51 (47), 39 (32)                           |
|     | 7.02 (1H, d, <i>J</i> = 10.9, ArH); 7.20-7.40 (6H, m, ArH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 138.4 (C <sub>Ar</sub> ), 139.8 (C <sub>Ar</sub> ), 166.0 (CO)                                                                                                                          |                                                     |

**Methoxycarbonylmethanesulfonyl chloride (1a).** Yield 77%; bp 115-116°C (15 mm Hg) [10]. **Ethoxycarbonylmethanesulfonyl chloride (1b).** Yield 72%; bp 124-126°C (15 mm Hg) [11].

Synthesis of Methoxycarbonylmethanesulfonyl Amides 2a-i (General Method). Ester 1a (17.25 g, 100 mmol) dissolved in acetonitrile (30 ml) was added slowly to a stirred solution of arylamine (110 mmol) and pyridine (8.96 g, 110 mmol) in acetonitrile (70 ml) at 15-20°C. The reaction mixture was heated to 35°C and maintained at the same temperature for 15 min. The mixture was diluted with water (600 ml) with stirring, and acidified with conc. HCl to pH  $\leq$ 2. The precipitated solid was filtered off and recrystallized from a mixture of diethyl ether and hexane.

4'-Methoxy(methoxycarbonyl)methanesulfonanilide (2h) was synthesized previously [3], but not characterized.

**N-Benzyl(ethoxycarbonyl)methanesulfonamide (2j).** A mixture of benzylamine (5.35 g, 50 mmol) and N-methylmorpholine (5.05 g, 50 mmol) in ether (50 ml) was added dropwise with stirring and cooling to a solution of sulfonyl chloride **1b** (9.3 g, 50 mmol) in diethyl ether (100 ml) at such a rate that the temperature did not exceed 2°C. The reaction mixture was then diluted with water (150 ml) and acidified with conc. HCl to pH  $\leq$ 2. The ether layer was separated, and the aqueous layer extracted with dichloromethane (2×30 ml). The organic phases were combined, dried over sodium sulfate, and evaporated to dryness. The product was recrystallized from diethyl ether. Yield was 60%; mp 56-57°C.

**N-Benzyl(methoxycarbonyl)methanesulfonanilide (2k).** Benzyl chloride (0.5 g, 4 mmol) was added to a mixture of sulfonamide **2a** (0.92 g, 4 mmol) and potassium carbonate (0.83 g, 6 mmol) in DMF (40 ml). The reaction mixture was stirred for 1 h at 20°C, after which it was heated to 40°C and stirred for 1 h further, then diluted with water (100 ml), acidified to pH  $\leq$ 2, and extracted with dichloromethane (3×50 ml). The organic layer was washed with 2% HCl (5×80 ml), dried over sodium sulphate, and evaporated to dryness. The product was isolated by chromatography on silica gel (eluent ethyl acetate–hexane, 1:2,  $R_f$  0.4). Yield was 24%, light-yellow oil. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 3.88 (3H, s, OCH<sub>3</sub>); 4.05 (2H, s, SO<sub>2</sub>CH<sub>2</sub>); 4.94 (2H, s, NCH<sub>2</sub>); 7.22-7.41 (10H, m, ArH). <sup>13</sup>C NMR spectrum,  $\delta$ , ppm: 53.2 (OCH<sub>3</sub>); 54.5 (CH<sub>2</sub>); 57.0 (CH<sub>2</sub>); 127.9 (C<sub>Ar</sub>H), 128.5 (C<sub>Ar</sub>H); 128.6 (C<sub>Ar</sub>H); 129.5 (C<sub>Ar</sub>H); 129.5 (C<sub>Ar</sub>H); 136.3 (C<sub>Ar</sub>); 138.3 (C<sub>Ar</sub>); 164.2 (CO). Mass spectrum, m/z ( $I_{rel}$ , %): 319 (8) [M]<sup>+</sup>, 181 (18), 104 (12), 91 (100), 84 (30), 77 (25), 51 (11). An analytically pure sample was not successfully obtained.

**N-Allyl(methoxycarbonyl)methanesulfonanilide (2l).** Allyl bromide (0.48 g, 4 mmol) was added with stirring at 55°C during 1.5 h to a mixture of sulfonamide **2a** (0.92 g, 4 mmol) and potassium carbonate (0.83 g, 6 mmol) in DMF (60 ml). The product was isolated analogously to sulfonamide **2k**. Yield was 68%, brown oil. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm (*J*, Hz): 3.83 (3H, s, OCH<sub>3</sub>); 3.99 (2H, s, SO<sub>2</sub>CH<sub>2</sub>); 4.36 (2H, d, *J* = 6.5, NCH<sub>2</sub>); 5.09-5.16 (2H, m, CH=CH<sub>2</sub>); 5.80 (1H, ddt, *J* = 6.5, *J* = 10.2, and *J* = 16.7, CH=CH<sub>2</sub>); 7.34-7.47 (5H, m, ArH). <sup>13</sup>C NMR spectrum,  $\delta$ , ppm: 53.2 (OCH<sub>3</sub>); 54.6 (CH<sub>2</sub>); 55.6 (CH<sub>2</sub>); 119.0 (CH=CH<sub>2</sub>); 128.5 (*p*-C<sub>Ar</sub>); 129.3 (*o/m*-C<sub>Ar</sub>); 129.5 (*m/o*-C<sub>Ar</sub>); 133.1 (CH=CH<sub>2</sub>); 138.4 (*ipso*-C<sub>Ar</sub>); 164.0 (CO). Mass spectrum, *m/z* (*I*<sub>rel</sub>, %): 269 [M]<sup>+</sup> (24), 238 (10), 132 (100), 117 (51), 104 (79), 91 (35), 77 (94), 65 (16), 57 (18), 51 (32). An analytically pure sample was not successfully obtained.

**Methyl 2-(N-benzyl-N-phenylaminosulfonyl)-3-phenylpropionate (3a)** was obtained analogously to sulfonamide **2k**,  $R_f$  0.3. Yield was 16%; mp 115-116°C. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm (*J*, Hz): 3.38 (1H, dd, *J* = 12.8 and *J* = 13.7, CHC<u>H</u>H'), 3.50 (1H, dd, *J* = 4.7 and *J* = 13.7, CHCH<u>H</u>'); 3.75 (3H, s, OCH<sub>3</sub>); 4.29 (1H, dd, *J* = 4.7 and *J* = 12.8, C<u>H</u>CH<sub>2</sub>), 4.72 (1H, d, *J* = 14.5, NC<u>H</u>H'); 4.96 (1H, d, *J* = 14.5, NCH<u>H</u>'); 7.16-7.27 (15H, m, ArH). <sup>13</sup>C NMR spectrum,  $\delta$ , ppm: 33.8 (CH<u>C</u>H<sub>2</sub>); 53.1 (OCH<sub>3</sub>); 57.1 (NCH<sub>2</sub>); 68.5 (<u>C</u>HCH<sub>2</sub>); 127.4 (C<sub>Ar</sub>H); 128.0 (C<sub>Ar</sub>H); 128.4 (C<sub>Ar</sub>H); 128.5 (C<sub>Ar</sub>H); 128.8 (C<sub>Ar</sub>H); 128.9 (C<sub>Ar</sub>H); 129.0 (C<sub>Ar</sub>H); 129.4 (C<sub>Ar</sub>H); 129.6 (C<sub>Ar</sub>H); 136.1 (C<sub>Ar</sub>); 138.4 (C<sub>Ar</sub>); 166.4 (CO). Mass spectrum, *m/z* (*I*<sub>rel</sub>, %): 409 [M]<sup>+</sup> (1), 182 (31), 131 (11), 121 (22), 104 (18), 91 (100), 77 (40), 65 (11), 51 (11). Found, %: C 67.44; H 5.72; N 3.25. C<sub>23</sub>H<sub>23</sub>NO<sub>6</sub>S. Calculated, %: C 67.46; H 5.66; N 3.42.

Synthesis of Sultams 4a,c-f,h-j (General Method). A solution of 1,2-dibromoethane (0.9 g, 4.8 mmol) in DMF (40 ml) was added during 1.5 h at 55-75°C to a mixture of the appropriate sulfonamide 2a,c-f,h-j (4 mmol) and potassium carbonate (1.66 g, 12 mmol) in DMF (60 ml) and the mixture was stirred until the end of reaction (check by TLC). The reaction mixture was then diluted with water (150 ml), acidified with conc. HCl to pH  $\leq$ 2, and extracted with dichloromethane (3×50 ml). The organic phase was washed with 2% HCl (5×80 ml), dried over sodium sulfate, and evaporated to dryness. The product was crystallized from a mixture of diethyl ether and hexane.

Methyl 2-(4-Ethoxycarbonylphenyl)-1,2-thiazolidine-5-carboxylate 1,1-Dioxide (4i) was isolated by chromatography on silica gel,  $R_f 0.25$ .

**Ethyl 2-Benzyl-1,2-thiazolidine-5-carboxylate 1,1-Dioxide (4j)** was isolated by chromatography on silica gel, oil,  $R_f 0.35$ . An analytically pure sample was not successfully obtained.

**2-Phenyl-1,2-thiazolidine-5-carboxylic** Acid **1,1-Dioxide** (5a). A 10% KOH solution (2.7 g, 4.8 mmol) was added to a solution of sultam **4a** (1.02 g, 4 mmol) in 50% aqueous methanol (50 ml) and the mixture stirred for 0.5 h. Water (100 ml) was added and the methanol distilled off in vacuum at 30°C on a rotary evaporator. After this, ethyl acetate (70 ml) was added to the aqueous solution and the mixture accurately acidified with 3% HCl to pH  $\leq$ 2. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (2×30 ml). The organic phases were combined, dried over sodium sulfate, and evaporated to dryness. The product was recrtystallized from a mixture of diethyl ether and hexane. Yield was 92%; mp 137-138°C. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm (*J*, Hz): 2.54-2.73 (2H, m, H-4); 3.72-3.82 (2H, m, H-3); 4.47 (1H, t, J = 8.4, H-5); 7.14-7.36 (5H, m, ArH). <sup>13</sup>C NMR spectrum,  $\delta$ , ppm: 21.6 (C-4); 44.4 (C-3); 62.4 (C-5); 119.4 (*o*-C<sub>Ar</sub>); 124.0 (*p*-C<sub>Ar</sub>); 128.9 (*m*-C<sub>Ar</sub>); 137.8 (*ipso*-C<sub>Ar</sub>); 164.9 (CO). Mass spectrum, *m/z* (*I*<sub>rel</sub>, %): 241 [M]<sup>+</sup> (31), 132 (58), 105 (100), 77 (65), 51 (20). Found, %: C 49.64; H 4.61; N 6.08. C<sub>10</sub>H<sub>11</sub>NO<sub>4</sub>S. Calculated, %: C 49.78; H 4.60; N 5.81.

Synthesis of Sultams 6a,e (General Method). A solution of 1-bromo-3-chloropropane (0.75 g, 4.8 mmol) in DMF (60 ml) was added during 1.5 h to a mixture of sulfonamide (2a or 2e) (4 mmol) and potassium carbonate (1.66 g, 12 mmol) in DMF (60 ml) at 60°C. After this the reaction mixture was stirred until the end of the reaction (check by TLC). The reaction mixture was processed as for sultams 4a-f.

Methyl 2-(2,6-Dimethylphenyl)-1,2-thiazepane-7-carboxylate 1,1-Dioxide (7e). A solution of 1,4-dibromobutane (0.91 g, 4.2 mmol) in DMF (60 ml) was added during 1.5 h to a mixture of sulfonamide 2e (1.03 g, 4 mmol) and potassium carbonate (1.66 g, 12 mmol) in DMF (60 ml) at 70°C, and the reaction mixture was stirred for 100 h. The mixture was diluted with water (150 ml), acidified with conc. HCl to pH  $\leq$ 2, and extracted with dichloromethane (3×50 ml). The organic phase was washed with 2% HCl (5×80 ml), dried over sodium sulfate, and evaporated to dryness. The product was recrystallized from a mixture of ethyl acetate–hexane.

**2-Phenyl-1,2-thiazinan-6-carboxylic Acid 1,1-Dioxide (8a)** was obtained analogously to compound **5a**. Yield was 94%; mp 141-142°C. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm (*J*, Hz): 1.96 (2H, m, H-4); 2.40 (2H, m, H-5); 3.45 (1H, m, H-3); 3.91 (1H, m, H-3'); 4.15 (1H, t, *J* = 7.3, H-6); 7.24-7.40 (5H, m, ArH). <sup>13</sup>C NMR spectrum,  $\delta$ , ppm : 22.5 (CH<sub>2</sub>); 27.6 (CH<sub>2</sub>); 52.8 (C-3); 63.6 (C-6); 126.5 (*p*-C<sub>Ar</sub>); 126.6 (*o/m*-C<sub>Ar</sub>); 128.6 (*m/o*-C<sub>Ar</sub>); 140.8 (*ipso*-C<sub>Ar</sub>); 165.7 (CO). Mass spectrum, *m/z* (*I*<sub>rel</sub>, %): 255 [M]<sup>+</sup> (13), 146 (50), 119 (50), 104 (58), 91 (25), 77 (100), 65 (17), 50 (40), 39 (40). Found, %: C 51.75; H 4.95; N 5.87. C<sub>10</sub>H<sub>11</sub>NO<sub>4</sub>S. Calculated, %: C 51.75; H 5.13; N 5.49.

(N-Benzylaminosulfonyl)acetic Acid (9j). Sodium hydride (100 mg, 2.5 mmol, 60% dispersion in oil) was added during 0.5 h to a solution of sulfonamide 2j (0.26 g, 1 mmol) and dibromoethane (0.21 g, 0.96 mmol) in THF (20 ml). After this the reaction mixture was evaporated to dryness in vacuum on a rotary evaporator at 30°C. Diethyl ether (30 ml) and 5% hydrochloric acid (50 ml) were added to the residue. The organic layer was separated, and the aqueous extracted with ethyl acetate (2×25 ml). The organic phases were combined, dried over sodium sulfate, and evaporated. The product was recrystallized from a mixture of ethyl

acetate and hexane. Yield was 92%; mp 155-156°C. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm (*J*, Hz): 4.05 (2H, s, SO<sub>2</sub>CH<sub>2</sub>); 4.19 (2H, d, *J* = 6.5, NCH<sub>2</sub>); 7.24-7.35 (5H, m, ArH); 7.93 (1H, t, *J* = 6.5, NH). <sup>13</sup>C NMR spectrum,  $\delta$ , ppm: 46.4 (NHCH<sub>2</sub>); 56.9 (SO<sub>2</sub>CH<sub>2</sub>); 126.9 (*p*-C<sub>Ar</sub>); 127.6 (*o*/*m*-C<sub>Ar</sub>); 128.0 (*m*/*o*-C<sub>Ar</sub>); 137.9 (*ipso*-C<sub>Ar</sub>); 164.6 (CO). Mass spectrum, *m*/*z* (*I*<sub>rel</sub>, %): 229 [M]<sup>+</sup> (5), 210 (10), 106 (100), 91 (50), 77 (18). Found, %: C 47.32; H 5.02; N 6.16. C<sub>9</sub>H<sub>11</sub>NO<sub>4</sub>S. Calculated, %: C 47.15; H 4.84; N 6.11.

**4-Methoxycarbonyl-2-phenyl-1,2,4,5-tetrahydrobenzo**[*d*][1,2]thiazepine 3,3-Dioxide (10a). A solution of 1,2-bis(bromomethyl)benzene (1.58 g, 6 mmol) in DMF (40 ml) was added during 2 h to a mixture of sulfonamide 2a (0.91 g, 4 mmol) and potassium carbonate (1.66 g, 12 mmol) in DMF (60 ml) at 65°C. The mixture was stirred until the end of the reaction (check by TLC). The mixture was diluted with water (150 ml), acidified with conc. HCl to pH  $\leq$ 2, and extracted with dichloromethane (3×50 ml). The organic phases were combined, washed with 2% HCl (5×80 ml), and evaporated to dryness. The product was recrystallized from ethyl acetate.

Methyl 1-(N-Methyl-N-phenylaminosulfonyl)cyclopropanecarboxylate (11b). A solution of 1,2-dibromoethane (1.65 g, 7.7 mmol) in DMF (40 ml) was added during 2 h to a mixture of sulfonamide 2b (1.94 g, 8 mmol) and potassium carbonate (3.31 g, 24 mmol) in DMF (60 ml) at 65°C, and the mixture was stirred for a further 24 h. The reaction mixture was then diluted with water (150 ml), acidified with conc. HCl to pH ≤2, and extracted with dichloromethane (3×50 ml). The organic phases were combined, washed with 2% HCl (5×80 ml), dried over sodium sulfate, and evaporated to dryness. Yield was 72%, light-yellow oil. <sup>1</sup>H NMR spectrum, δ, ppm: 1.45 (4H, m, CH<sub>2</sub>CH<sub>2</sub>); 3.51 (3H, s, NCH<sub>3</sub>); 3.79 (3H, s, OCH<sub>3</sub>); 7.30-7.40 (5H, m, ArH). <sup>13</sup>C NMR spectrum, δ, ppm: 17.11 (CH<sub>2</sub>CH<sub>2</sub>); 40.70 (NCH<sub>3</sub>); 40.96 (SO<sub>2</sub>C); 53.00 (OCH<sub>3</sub>), 126.67 (*o/m*-C<sub>Ar</sub>); 127.79 (*p*-C<sub>Ar</sub>); 129.35 (*m/o*-C<sub>Ar</sub>); 141.48 (*ipso*-C<sub>Ar</sub>); 168.27 (CO). Mass spectrum, *m/z* (*I*<sub>rel</sub>, %): 269 [M]<sup>+</sup> (12), 106 (100), 77 (53), 51 (12), 39 (25). Found, %: C 53.70; H 5.62; N 5.26. C<sub>12</sub>H<sub>15</sub>NO<sub>4</sub>S. Calculated, %: C 53.52; H 5.61; N 5.20.

**1-(N-Methyl-N-phenylaminosulfonyl)cyclopropanecarboxylic Acid (12b).** A 10% solution of KOH (2.8 g, 5 mmol) was added to a boiling solution of ester **8b** (1.07 g, 4 mmol) in 50% aqueous ethanol (20 ml). The solution was heated for a further 10 min, cooled to room temperature, diluted with water (100 ml), and acidified with HCl to pH  $\leq$ 2. The obtained suspension was extracted with ethyl acetate (3×50 ml), the organic phases were combined, dried over sodium sulfate, and evaporated to dryness. The product was recrystallized from a hexane–ethyl acetate mixture. Yield was 86%; mp 150-151°C. <sup>1</sup>H NMR spectrum (DMSO-d<sub>6</sub>),  $\delta$ , ppm: 1.24 (4H, m, CH<sub>2</sub>CH<sub>2</sub>); 3.43 (3H, s, NCH<sub>3</sub>); 7.27-7.37 (5H, m, ArH). <sup>13</sup>C NMR spectrum (acetone-d<sub>6</sub>),  $\delta$ , ppm: 14.4 (CH<sub>2</sub>CH<sub>2</sub>); 38.6 (NCH<sub>3</sub>); 39.0 (SO<sub>2</sub>C); 125.9 (*p*-C<sub>Ar</sub>), 126.1 (*o/m*-C<sub>Ar</sub>); 127.6 (*m/o*-C<sub>Ar</sub>); 140.4 (*ipso*-C<sub>Ar</sub>); 167.0 (CO). Mass spectrum, *m/z* (*I*<sub>rel</sub>, %): 255 (32) [M]<sup>+</sup>, 106 (100), 79 (21), 77 (62), 51 (12), 39 (44). Found, %: C 51.70; H 5.22; N 5.56. C<sub>11</sub>H<sub>13</sub>NO<sub>4</sub>S. Calculated, %: C 51.75; H 5.13; N 5.49.

## REFERENCES

- 1. M. D. Mashkovskii, Drugs [in Russian], Vol. 2, Meditsina, Moscow (1986).
- 2. A. T. Soldatenkov, N. M. Kolyadina, and I. V. Shendrik, *Fundamentals of the Organic Chemistry of Medicinal Substances* [in Russian], Khimiya, Moscow (2001).
- S.-U. Kang, W. J. Choi, S. Oishi, K. K. Lee, R. G. Karki, K. M. Worthy, L. K. Bindu, M. C. Nicklaus, R. J. Fisher, and T. R. Burke, Jr., *J. Med. Chem.*, 50, 1978 (2007).
- 4. A. Thorarensen, B. D. Wakefield, D. L. Romero, K. R. Marotti, M. T. Sweeney, G. E. Zurenko, D. C. Rohrer, F. Han, and G. L. Bryant, *Bioorg. Med. Chem. Lett.*, **17**, 2823 (2007).
- 5. B. Love, M. Kormendy, and K. M. Snader, *Synthesis*, **31**, 3531 (1966).
- 6. S. Rossi and G. Pagani, Ann. Chim. (Rome), 56, 728 (1966).
- 7. D. D. Long and A. P. Termin, *Tetrahedron Lett.*, **41**, 6743 (2000).

- 8. J. E. Oliver and A. B. DeMilo, Synthesis, 321 (1975).
- 9. N. L. Allinger and W. Zalkow, J. Org. Chem., 25, 701 (1960).
- 10. M. J. Szymonifka and J. V. Heck, *Tetrahedron Lett.*, **30**, 2869 (1989).
- 11. A. Berre, A. Etienne, B. Desmazieres, Bull. Soc. Chim. Fr., 807 (1975).